Exercice 1 (3 points)

Soit f la fonction polynôme du second degré définie par $f(x) = -\frac{x^2}{2} + \frac{x}{3} + 1$ Déterminer les racines de f, sa forme canonique, son tableau de variation et son signe.

Exercice 2 (3 points)

On considère la parabole dont le sommet est S(3;5) et qui passe par l'origine du repère.

Déterminer une équation de cette parabole, puis les coordonnées de son second point d'intersection avec l'axe des abscisses.

Exercice 3 (7 points)

Résoudre les inéquations suivantes :

$$1^{\circ}/\frac{x-3-x^2}{2x^2-1} \geqslant 0$$
 $2^{\circ}/\frac{x}{x+1}+1 \leqslant \frac{3}{x+2}$

Exercice 4 (4 points)

On considère la parabole (P) d'équation $y=x^2-2x+3$ et la droite D d'équation y=x+p, où $p\in\mathbb{R}$ Montrer qu'il existe une valeur de p pour laquelle (P) et D possèdent un unique point d'intersection; déterminer alors les coordonnées de ce point d'intersection.

Exercice 5 (3 points)

On considère le trinôme $x^2 + mx + p$ où $m, p \in \mathbb{R}$ avec p < 0.

- 1. Montrer que ce trinôme possède deux racines distinctes.
- 2. On note x_1 et x_2 les racines du trinôme : exprimer m et p en fonction de x_1 et x_2 .